Cross-border Collaboration and Portfolio Management of Research Infrastructures (RIs):
- Balancing Out Support to Infrastructures of Different Sizes, Serving Different Communities – U.S. Case Study

Science Europe Workshop:

Randy L. Phelps, Ph.D.
rphelps@nsf.gov

“The Research Infrastructure Ecosystem”

- Where does one want to play?
 - “Tools”
 - “Locations”
 - “Research”
 - “Cyberinfrastructure”
- “Scale” is driven by stakeholders
 - Local
 - Regional
 - Science Community
 - National/International
- “[Multi]Discipline” is driven by research communities...

Different Programs / Different Scale

- Existing NSF programs are based on (multi)disciplinary needs, as well as scale:
 - “Small”
 - Few remaining discipline-specific instrumentation programs
 - Foundation-wide “Major Research Instrumentation” (MRI) Program
 - “Large”
 - Foundation-wide “Major Research Equipment and Facilities Construction” (MREFC) account
 - “Mid-scale”
 - Very few discipline-specific “in-between-scale” (“mid-scale”) activities
 - No Foundation-wide “mid-scale” activity
The Major Research Instrumentation (MRI) Program

- Acquisition (ACQ) or Development (DEV) of a scientific research instrument
- Maximum request from NSF: $4 million. Minimum request from NSF: $100,000 (with caveats)
- Cost sharing at 20% of total project cost is mandated by U.S. Congress
- Allows for:
 - ACQ: Operations/Maintenance during award period (salary/service contract, etc.)
 - DEV: Salary support for those involved in development, commissioning
- Institutional submission limits (3 max) → 800+ MRI proposals
- Proposals distributed to Divisions based on PI preference
- Institutions determine the mix of disciplines MRI receives
- MRI $$ allocated based on $$ value of proposals being reviewed by a unit
- Funds further parsed based on 1) institution type, 2) size of request

MRI Aspirational Goals

- Provides state-of-the-art research instrumentation up to $4 million
- Develops next generation instrumentation
- Supports research across all NSF Directories
- Catalyzes new knowledge and discoveries
- Empowers the Nation's scientists and engineers
- Enables research-intensive learning environments
- Builds capacity for a diverse workforce
- Develops next generation instrumentation
- Promotes academic/private sector partnerships

Seattle University, a primarily undergraduate institution, credits MRI in part with transformative institutional changes:
• Increased Scholarly Activity
• Active grants from $8 million to $13 million
• Office of Research established
• Creation of NMR & laser labs
• New science building planned

“The Array of Things”, a project supported by MRI and recently announced as part of the White House’s “Smart Cities Initiative”, serves as a tool for researchers to rapidly deploy sensors, embedded systems, computing and communications systems at scale in an urban environment.

Seattle University, a primarily undergraduate institution, credits MRI in part with transformative institutional changes:
• Increased Scholarly Activity
• Active grants from $8 million to $13 million
• Office of Research established
• Creation of NMR & laser labs
• New science building planned

The Major Research Instrumentation (MRI) Program

- A messy flowchart......
Major Research Equipment and Facilities Construction (MREFC)

- Projects representing ~10% of an NSF Directorate’s budget
- Typically $100 million+ depending on Directorate
- Examples:
 - MRI
 - RV Sikuliaq
 - Atacama Large Millimeter/submillimeter Array (ALMA)

Rough Yearly MREFC Budget ~ $225 million
- Covers only Construction. Operations and Maintenance covered from Divisional resources.
- Priorities set by research communities, e.g.,
 - MPS/AST: Astronomy and Astrophysics Decadal Survey (NAS)
 - GEO/AGS: Solar/Heliophysics Decadal Survey (NAS)
 - GEO/AGS, MPS/AST: Planetary Sciences Decadal Survey (NAS)
 - ENG: 14 Grand Challenges for the 21st Century (NAE)
- Currently, proposals received ad hoc when “ready”, little sequencing prioritization
- National Science Board involved in the approval process per the “NSF Large Facilities Manual”....
Major Research Equipment and Facilities Construction (MREFC)

- There is a “gap” at the Foundation-level between MRI and MREFC.
- A few NSF Divisions have programs to “fill the gap”, but little $$.
- Part of the NSF’s “10 Big Ideas” involves “Mid-scale Research Infrastructure”.
- Stay tuned....

Thank You!

Questions: rphelps@nsf.gov

NSF in the U.S. Federal Context

- Who pays?

<table>
<thead>
<tr>
<th>Agency</th>
<th>2017 R&D (Billions of Dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>$2.9</td>
</tr>
<tr>
<td>Energy</td>
<td>$17.3</td>
</tr>
<tr>
<td>NASA</td>
<td>$12.8</td>
</tr>
<tr>
<td>NSF</td>
<td>$6.5</td>
</tr>
<tr>
<td>Commerce (NIST)</td>
<td>$4.8</td>
</tr>
<tr>
<td>NASA (Agen)</td>
<td>$6.8</td>
</tr>
<tr>
<td>Total R&D</td>
<td>$152.3</td>
</tr>
<tr>
<td>Total R&D by Agency</td>
<td>Total R&D by Agency</td>
</tr>
<tr>
<td>Agriculture</td>
<td>$2.9</td>
</tr>
<tr>
<td>Energy</td>
<td>$17.3</td>
</tr>
<tr>
<td>NASA (Agen)</td>
<td>$12.8</td>
</tr>
<tr>
<td>NSF</td>
<td>$6.5</td>
</tr>
<tr>
<td>Commerce (NIST)</td>
<td>$4.8</td>
</tr>
<tr>
<td>Total R&D</td>
<td>$152.3</td>
</tr>
<tr>
<td>Total R&D by Agency</td>
<td>Total R&D by Agency</td>
</tr>
<tr>
<td>Agriculture</td>
<td>$2.9</td>
</tr>
<tr>
<td>Energy</td>
<td>$17.3</td>
</tr>
<tr>
<td>NASA (Agen)</td>
<td>$12.8</td>
</tr>
<tr>
<td>NSF</td>
<td>$6.5</td>
</tr>
<tr>
<td>Commerce (NIST)</td>
<td>$4.8</td>
</tr>
<tr>
<td>Total R&D</td>
<td>$152.3</td>
</tr>
<tr>
<td>Total R&D by Agency</td>
<td>Total R&D by Agency</td>
</tr>
</tbody>
</table>
NSF in the U.S. Federal Context

NSF Support of Academic Basic Research in Selected Fields (as a percentage of total federal support)

- Computer Science
- Biology
- Social Sciences
- Mathematics
- Environmental Sciences
- Engineering
- Physical Sciences
- All Science and Engineering Fields